Notes: 8.3 Polar form of Complex Numbers

Given: polar coordinates (r, θ)

r → often called the <u>absolute value</u> or the <u>modulus</u> (distance)

θ → often called the <u>amplitude</u> or <u>argument</u> (angle measure)

$$r = \sqrt{a^2 + b^2}$$
$$\tan \theta = \frac{b}{a}$$

<u>Absolute Value (modulus)</u>:

The distance between a number and zero

coordinates rectangular to polar $(x, y) \rightarrow (r, \theta)$ $r = \sqrt{x^2 + y^2}$ $\tan\theta = \frac{y}{2}$

complex numbers

rectangular form to polar form $a + bi \rightarrow r(\cos\theta + i\sin\theta)$

$$r = \sqrt{a^2 + b^2}$$
$$\tan \theta = \frac{b}{a}$$

Choose tangent value from the quadrant where (x, y) and (a, b) are located

EXAMPLE 1: Graph the complex number, then find the modulus r.

Graph a point at $(\sqrt{5}, 1)$ **Since** $\sqrt{5}$ **is slightly larger than 2, move over about 2.2 and up 1.**

$$\sqrt{5}+1i \rightarrow (\sqrt{5}, 1)$$

a + bi

a,b

 $r = \sqrt{\left(\sqrt{5}\right)^2 + 1^2}$

$$r = \sqrt{6}$$
 modulus

r is the distance from the origin to the given point

To find the modulus, calculate r using the coefficients a and b from the given complex number (which is similar to how we used x and y previously.)

$$r = \sqrt{a^2 + b^2}$$
 or $r = \sqrt{x^2 + y^2}$
 $\tan \theta = \frac{b}{a}$ or $\tan \theta = \frac{y}{x}$

Complex Plane

(R, *i*)

EXAMPLE:

 $r(\cos\theta + i\sin\theta)$

Write the complex number in polar form. $-2 - 2\sqrt{3} i$ $r = \sqrt{a^2 + b^2}$ $\tan\theta = \frac{b}{-}$ Calculate r and θ using b a the coefficients a and b $r = \sqrt{(-2)^2 + (-2\sqrt{3})^2}$ $\tan\theta = \frac{-2\sqrt{3}}{-2}$ $r = \sqrt{4 + 12}$ $\tan \theta = \sqrt{3}$ Choose tan₀ from $r = \sqrt{16}$ Quad III since the $\theta = \frac{4\pi}{2}$ given point is located in Quad III r=4Therefore, $-2-2\sqrt{3}i = 4\left(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3}\right)$

EXAMPLE continued:

given :
$$-2 - 2\sqrt{3} i$$

 $r = \sqrt{(-2)^2 + (-2\sqrt{3})^2}$
 $\tan \theta = \frac{-2\sqrt{3}}{-2}$
 $\tan \theta = \sqrt{3}$
 $r = \sqrt{4 + 12}$
 $\pi = \sqrt{16}$
 $\pi = \sqrt{16}$
 $\pi = 4$
Therefore, $-2 - 2\sqrt{3}i = 4\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$

NOTE: if you simplify the expression on the right side, it will be equal to the value on the left side.

