Notes: 8.3 Polar form of Complex Numbers

Rectangular Plane (x, y)

Polar Plane
(r, θ)

Complex Plane
(R, i)
$a+b i \rightarrow$ rectangular form of a complex number. Graphed as (a,b) in complex plane Similar to (x, y)

Given: polar coordinates (r, θ)

$r \rightarrow$ often called the absolute value or the modulus (distance)
$\theta \rightarrow$ often called the amplitude or argument (angle measure)

$$
r=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=\frac{b}{\square}
$$

Absolute Value (modulus):
 The distance between a number and zero

Absolute Value of a Complex Number
$|a+b i|=\sqrt{a^{2}+b^{2}}$
($\mathrm{r}=$ modulus)

Polar Form of a Complex Number
$r(\cos \theta+i \sin \theta)$

$$
r=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=\frac{b}{}
$$

COMPARE:

coordinates
rectangular to polar
$(x, y) \rightarrow(r, \theta)$
$r=\sqrt{x^{2}+y^{2}}$
$\tan \theta=\frac{y}{x}$

complex numbers

rectangular form
to polar form
$\mathrm{a}+\mathrm{b} i \rightarrow \mathrm{r}(\cos \theta+i \sin \theta)$

$$
r=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=\underline{b}
$$

a

Choose tangent value from the quadrant where (x, y) and (a, b) are located

EXAMPLE 1: Graph the complex number, then

 find the modulus r.$\sqrt{5}+i$
Graph a point at $(\sqrt{5}, 1)$
Since $\sqrt{5}$ is slightly larger than 2 , move over about 2.2 and up 1 .

$$
\begin{array}{lc}
\sqrt{5}+1 i \rightarrow & (\sqrt{5}, 1) \\
a+b i & a, b
\end{array}
$$

Complex Plane

$$
r=\sqrt{(\sqrt{5})^{2}+1^{2}}
$$

To find the modulus, calculate r using the coefficients a and b from the given complex number (which is similar to how we used x and y previously.)
(R, i)

$$
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}} \text { or } r=\sqrt{x^{2}+y^{2}} \\
& \tan \theta=\frac{b}{a} \text { or } \tan \theta=\frac{y}{x}
\end{aligned}
$$

r is the distance from the origin to the given point

EXAMPLE:

Write the complex number in polar form. \uparrow

$-2-2 \sqrt{3} \boldsymbol{i} \quad r=\sqrt{a^{2}+b^{2}}$
ab
Calculate r and θ using the coefficients a and b
$\tan \theta=\frac{b}{a}$
$r=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}}$
$r=\sqrt{4+12}$
$r=\sqrt{16}$
$r=4$

$$
\begin{aligned}
& \tan \theta=\frac{-2 \sqrt{3}}{-2} \\
& \tan \theta=\sqrt{3}
\end{aligned}
$$

Choose $\tan \theta$ from

$$
\theta=\frac{4 \pi}{3}
$$ Quad III since the given point is located in Quad III

Therefore, $-2-2 \sqrt{3} i=4\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$

EXAMPLE continued:

given: $-2-2 \sqrt{3} \boldsymbol{i}$

$$
\begin{aligned}
& r=\sqrt{(-2)^{2}+(-2 \sqrt{3})^{2}} \\
& r=\sqrt{4+12} \\
& r=\sqrt{16}
\end{aligned}
$$

$$
\tan \theta=\frac{-2 \sqrt{3}}{-2}
$$

$$
\tan \theta=\sqrt{3}
$$

$$
\theta=\frac{4 \pi}{3}
$$

\downarrow STOP HERE
$r=4$
Therefore, $-2-2 \sqrt{3} i=4\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$
NOTE: if you simplify the expression on the right side, it will be equal to the value on the left side.

